Safely Operating in Dynamic Scenarios

ADS Demonstration Grant

TRANSPORTATION INSTITUTE

Program Overview

5-27-2020

Michael Mollenhauer Director, Division of Technology Development

CAMP LLC

Virginia Tech Transportation Institute

- This is our 31st year
- Largest transportation research institute in the U.S. by most metrics
- Safety focus
- 300+ projects, 40+ proprietary projects
- ~520 total employees on "payroll" at any given time
 - 300 full-time
 - 300 students funded for at least part of a year
- Participation from over 150 VT faculty in the last few years

SAE Levels of Automation

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Full Automation

0

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

1

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design. 2

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

3

Conditional Automation

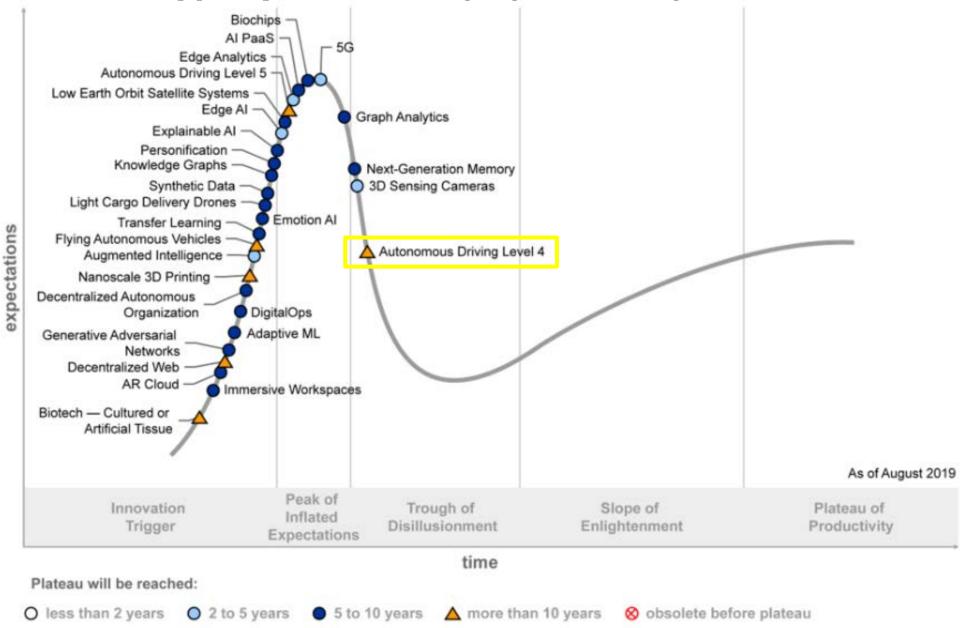
Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4

High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5


Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

Advancing Transportation Through Innovation

Gartner Hype Cycle for Emerging Technologies 2019

VIRGINIA TECH TRANSPORTATION INSTITUTE

ADS-Equipped Light Vehicle Testing Examples

Technically, most companies are just testing, but this testing involves more than engineers monitoring ADS performance and tracking disengagements:

Waymo

• launched a driverless service in the **Phoenix** area and is testing in **Atlanta**, **Kirkland**, **Detroit**, **Austin** and **Mountain View**

Ford/Argo

• is testing pizza, floral, dry cleaning delivery services in **Miami** with additional testing in **Austin**, **Dearborn**, **DC**, **Palo Alto** and **Pittsburgh**

Aptiv and Lyft

have a partnership "driving" riders in Las Vegas

Toyota

• is driving safely in Michigan and California

GM/Cruise

• is testing a food delivery service in **San Francisco** and is also testing in **Warren** and **Scottsdale**

Other ADS-Equipped Vehicle Testing Examples

Shuttles

<u>Package Delivery</u>

Trucking

Easy Mile

Starship

TuSimple

Local Motors

prime

Amazon

Perrone Robotics

Nuro

Kodiak

Optimus Ride

Work Zones and Crash Scenes Present Challenges for Automation

- Temporary, unconventional layout
 - Alteration of roadway
 - Level of standardization depends on operator and jurisdiction
 - Detailed data may be fragmented or unavailable
 - Real time HD maps
- Audio, visual, and gesture commands may be given onsite
- Novel pathfinding directions driving against rules may be required
- Chaotic scenes with debris, random vehicle orientations, unexpected pedestrian activity
- Emergency lighting, fire, dust, smoke, etc. may affect sensor perception

FHWA ADS Demo NOFO Overview

Focus

- Demonstrate L3+ ADS technologies and obtain targeted deployment feedback
- Evaluate and identify key aspects for the safe integration of ADS into the Nation's onroad transportation

Goals

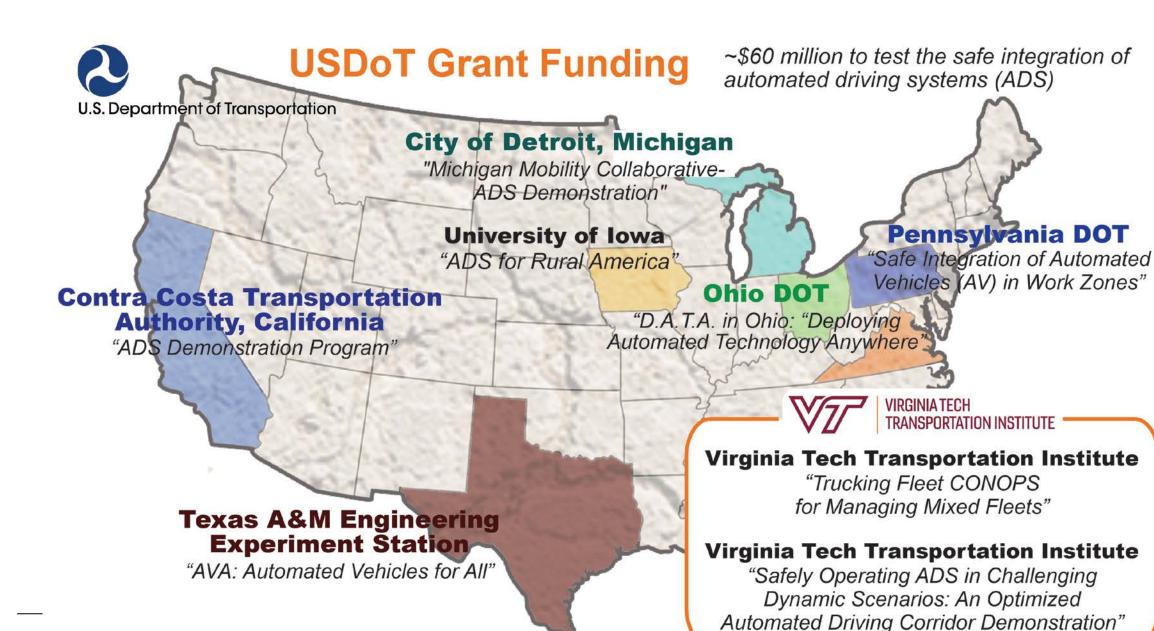
- Demonstrate the safe integration of ADS into the Nation's transportation system
- Inform safety analysis and rulemaking with data
- Create a collaborative environment that harnesses the collective expertise to advance the deployment of ADS

Awards

- USDOT made <u>8 awards</u>, \$60M total awards
- Up to 4 year duration

USDOT Goals and Focal Areas of Program

- Improve Safety
- Foster Collaboration
- Data for rule making and system development
- Significant public benefit
- Addressing an area where the market may not develop in isolation
- Fostering economic vitality
- Developing complex technology
- Contributing to a diverse set of ADS projects at the USDOT
- Addressing transportation-challenged populations
- Developing prototype systems



Our Demonstration Concept

Safe L4 ADS Interactions with Public Services

Cooperative L3+ ADS Operation on a Managed Corridor

John Hanson Highway

Partners

Rationale

Interaction with public services is a key aspect to the safe integration of ADS-equipped vehicles on roadways

The mobility benefits of ADS-equipped vehicles may only be realized through cooperative operations

CAMP LLC

Collaboration

OEMs and ADS Developers

Are there opportunities to improve ADS interaction with public safety operations?

Infrastructure Owner Operators

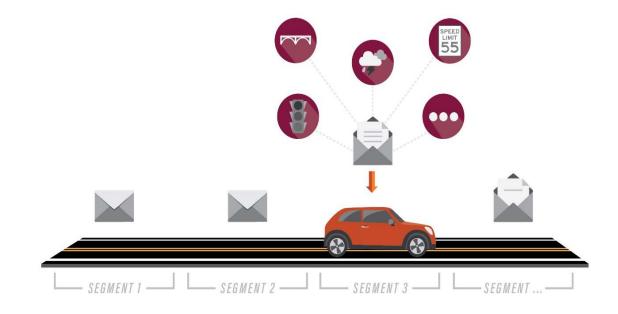
How can we facilitate safe ADS deployment?

Public Safety Providers

How should we interact with ADS and how will they respond?

Virginia Tech Transportation Institute

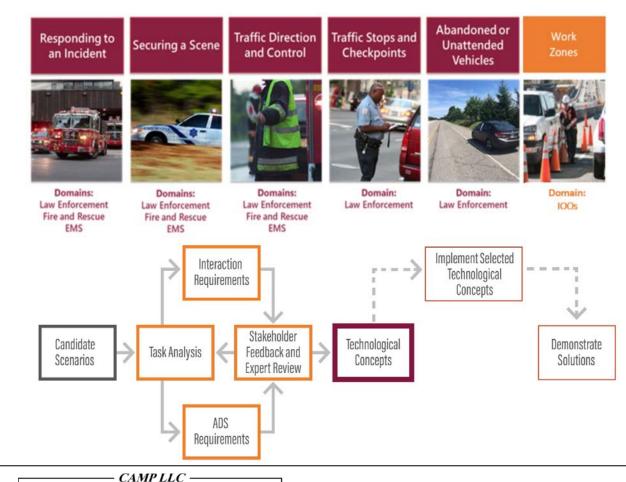
- Build consensus on requirements and technological solutions
- Leverage infrastructure data to ensure safe ADS operation
- Develop L4 ADS capabilities to demonstrate safe interactions, cooperative operation, and collect data
- Create simulations of interactions and distribute data to OEMs and ADS developers
- Develop recommendations, data, and educational materials for OEMs, IOOs, and Public Safety Providers



CAMP LLC

Task 1: Develop Solutions for Corridor Optimization

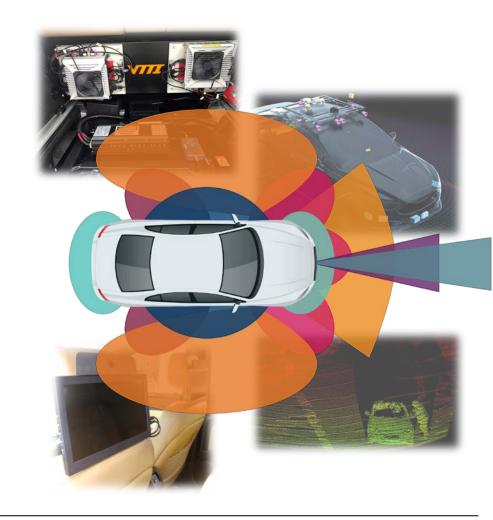
- Evaluate Express Lanes for Demo
 - Communications requirements and technology options
 - Assess signage, striping, TOC capability, etc.
- Develop spec for real time Operational Design Domain (ODD) support system
 - Investigate source data available
 - Develop messages to provide data to vehicles
 - OEM stakeholder review of messages and content
 - Spec architecture for message flow and management
 - Spec full ODD TOC-side tool
- Develop high-level CADS demo concept
 - Dynamic speed harmonization solution with CACC
 - High level vehicle-side requirements to support demo



CAMPLLC -

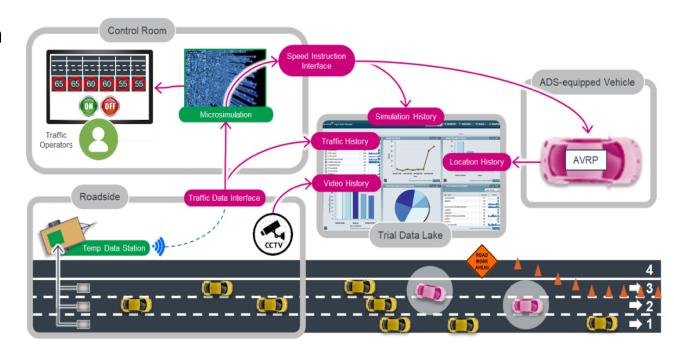
Task 2: Dynamic Scenario Definition and Development of Technological Solutions

- Extend existing task analysis to support SSP and Work Zone use cases (VTTI)
- Candidate scenarios
- Interaction requirements
- Technological concepts
 - Scan for available technologies or development opportunities
 - Cost/feasibility/practicality/acceptance, etc.
- ADS requirements to support technological concepts
- Public safety requirements to support technological concepts



Task 3: Build Reference Demonstration Vehicles

- Vehicle platform goals
 - Capable of performing L4 operation within the ODD of the selected scenarios
 - Capacity for ride-along participants
 - Significant data collection capability
- Platform selection
 - Significant time has passed since proposal
 - New options are available
 - Evaluate CARMA to identify opportunities to incorporate
- Build and test the vehicle(s) for selected scenarios



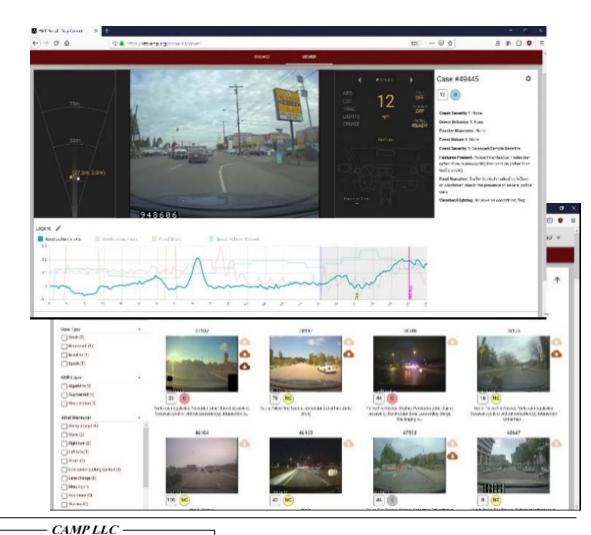
CAMP LLC

Task 4: Build TOC Applications

- Build and test ODD support tool specified in Task 1
 - Traffic conditions
 - Weather
 - Work zones
 - Incidents
 - Build upon AMCD/EDCM concepts
- Dynamics speed harmonization application
- Build and test TOC side of cooperative automation applications
 - Recommended speed
 - Recommended lane selection
 - Platoon configuration

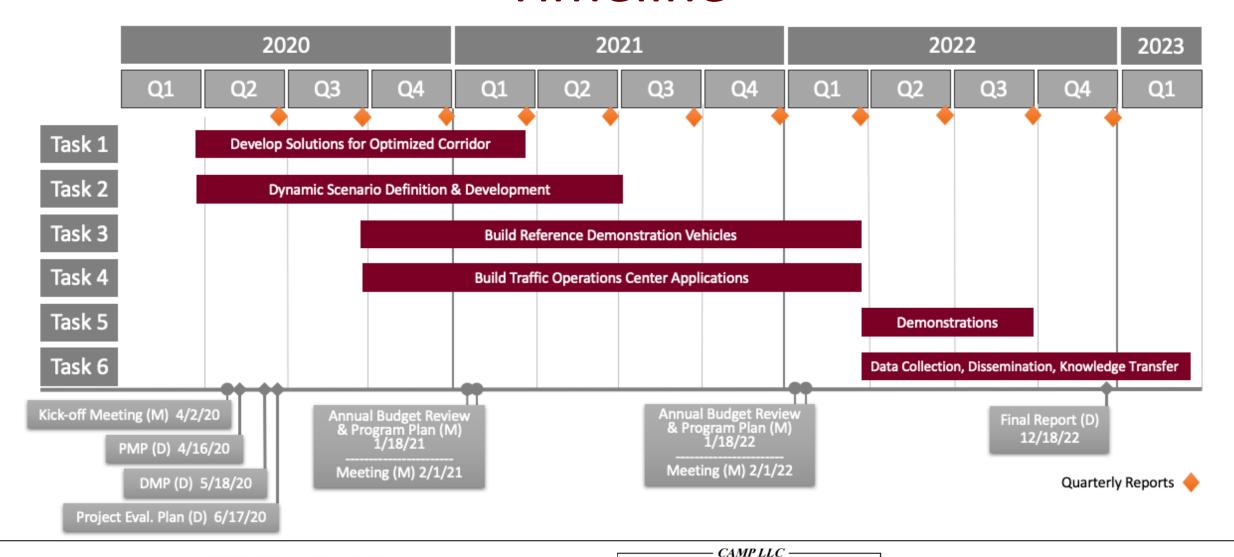
Task 5: Design and Conduct Demonstrations

- Three high profile demonstration events
 - Northern VA and possibly Smart Road in Blacksburg, VA
 - Primary stakeholder groups include IOO's, OEM's, Public Safety Providers
 - On-road, parking lot, and test track options
 - Staged scenarios and events
- Participation from public safety partners
- Focus group sessions



Task 6: Data Collection, Processing, and Dissemination

- Data collected during testing and demonstrations will be processed into several datasets
 - On-board DAS
 - Scenario demonstration
 - Scenario simulation
 - Infrastructure data
 - Subjective assessment
- Source data for ADS development and public safety training
- Hosted on portal for public access



Timeline

Questions?

Mike Mollenhauer

mmollen@vt.edu

(970)227-3373

